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EXECUTIVE SUMMARY

Planning and scheduling problems arise in many important Air Force operations. In most
of these operations, information regarding the battle space for the operations is uncertain and
evolves over time. Future information systems will provide the capability for monitoring the
progress of operations in real-time for commanders to modify prior plans and schedules. This
creates a need for fast, real-time techniques which optimize plans in the presence of uncertainty,
and which anticipate contingencies which require replanning, so that the original plans can be
modified with minimal impact.

In this research, we sudied a class of planning and scheduling problems motivated by the
Air Force application of data collection. In this application, surveillance platforms are tasked to
fly routes and collect information on targets along their routes; contingencies arise when
platforms fail or the set of targets changes dynamically. We developed a mathematical
abstraction of this problem as a multiplatform routing and scheduling problem on a graph with
risky routes which can lead to platform destruction. In this abstraction, there is uncertainty as to
whether a platform will complete its mission successfully, or be destroyed. Thus, good
schedules must hedge against such contingencies, and provide the opportunity for backups, and
allow for fast replanning.

Conceptually, the problem of planning and scheduling under uncertainty can be solved as
a Markovian decision problem, using stochastic dynamic programming. However, this requires
prohibitive amounts of computation for realistically sized problems, and thus is inadequate as a
practical algorithm for real time planning or replanning. The approach pursued in this research is
based on approximate stochastic dynamic programming techniques. These techniques generate
estimates of the future costs of optimal strategies, and thus allow these estimates to be used in
evaluating the consequences of current decisions. The resulting decision process accounts
successfully for future consequences as well as present rewards, and thus results in good
performance in the presence of contingencies.

The key to the research approach is obtaining accurate approximations to the future
optimal costs. In this research, we focused on one powerful class of methods: rollout strategies
based on simple heuristics. Rollouts are a class of solution methods inspired from the policy
iteration methodology of dynamic programming and the approximate policy iteration
methodology of neuro-dynamic programming. One may view a rollout algorithm as a single step
of the classical policy iteration method, starting from some given easily implementable policy.

* such as that obtained from application of a simple heuristic. The basic idea is to use as an
estimate of the future optimal cost the expected cost associated with a simple policy. The rollout
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algorithm performs a policy iteration step which is guaranteed to improve on the performance of
the simple policy.

Algorithms of this type have been used successfully in several dynamic programming
application contexts. They have also been proposed by Tesauro [1996] in the context of
simulation-based computer backgammon; the name “rollout” was introduced by Tesauro as a
synonym for repeatedly playing out a given backgammon position to calculate by Monte Carlo
averaging the expected game score starting from that position. Rollout algorithms were first
proposed for the approximate solution of discrete optimization problems by Bertsekas and
Tsitsiklis [1996], and by Bertsekas, Tsitsiklis, and Wu [1997]. The methodology used in this
research is similar to the ideas in those sources, but extended to the stochastic planning

situations.

One particular variation of multiplatform planning problems which was addressed in
detail consisted of variations of a classical stochastic scheduling problem called the quiz
problem. A simple summary of a quiz problem is as follows: Assume that there is a finite set of
$K$ locations which contain tasks of interest, of differing value. There is a single processor on
which the tasks are to be scheduled. Associated with each task is a task-dependent risk that,
while executing that task, the processor will be damaged and no further tasks will be processed.
The objective is to find the optimal task schedule in order to maximize the expected value of the
completed tasks.

In the classical quiz problem, there is no constraint on the sequences or times during
which the tasks can be scheduled, and there is only a single processor. This classical problem
can be viewed in terms of dynamic programming, but can more simply be viewed as a
combinatorial problem, whereby we are seeking an optimal sequence in which to answer the
questions. It is well-known that the optimal sequence is deterministic, and can be obtained using
an interchange argument: questions should be answered in decreasing order of an index
depending on task values and the probabilities of task completion. However, minor changes in
the structure of the problem lead to much more complicated optimal strategies. These changes
include time limits on the total number of tasks which can be processed, time windows for
scheduling each task, precedence constraints or multiple processors.

Our investigations focused on developing approximate dynamic programming algorithms
for these extensions of classical quiz problems. The work presented in Appendix A considers a
variety of extensions deterministic and stochastic versions of quiz problems involving a single
processor, and compares the peformance of rollout algorithms with that of common heuristics
and with the optimal stochastic dynamic programming solution. The results demonstrate that
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the rollout algorithms perform significantly better than the underlying heuristics and, under some
circumstances within 5-10% of the optimal solution.

The next step in our research was to investigate extensions to multiplatform scheduling
problems. A mathematical statement of this problem can be developed for platforms constrained
to moving on graphs, with tasks located at nodes in the graph. This framework incorporates
precedence constraints as well as risks. Our investigations of these problems are documented in
the working paper included in Appendix B. Our initial approaches were based on developing
approximations to the optimal cost to go using constraint modifications and certainty equivalent
deterministic approximations. We have yet to implement the equivalent of rollout strategies for
this class of problems. The results in Appendix B show that the certainty equivalent
approximations proposed have very poor performance when used as approximations to the
stochastic cost-to-go, a fact which surprised us and suggests that alternative approaches are

required.

The research described in this executive summary and the two appendices was performed
by Prof. David Castafion, Mr. David Logan, Prof. Dimitri Bertsekas, and Dr. Stephen Patek. The
paper in Appendix A has been submitted for publication to the 1998 Conference on Decision and
Control, and to the journal Heuristics.
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APPENDIX A
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ROLLOUT ALGORITHMS FOR
STOCHASTIC SCHEDULING PROBLEMS:

by

Dimitri P. Bertsekas? and David A. Castafion3

Abstract

Stochastic scheduling problems are difficult stochastic control problems with combinatorial
decision spaces. In this paper we focus on a class of stochastic scheduling problems, the quiz
problem and its variations. We discuss the use of heuristics for their solution, and we propose
rollout algorithms based on these heuristics which approximate the stochastic dynamic program-
ming algorithm. We show how the rollout algorithms can be implemented efficiently, and we
delineate circumstances under which they are guaranteed to perform better than the heuristics
on which they are based. We also show computational results which suggest that the performance
of the rollout policies is near-optimal, and is substantially better than the performance of their

underlying heuristics.

1 This work was supported in part by the Air Force Office of Scientific Research under grant

no. F49620-97-C-0013
2 Department of Electrical Engineering and Computer Science, M. I. T, Cambridge, Mass.,

02139.
3 Department of Electrical Engineering, Boston University, and ALPHATECH, Inc., Burling-

ton, Mass., 01803.




1. Introduction

1. INTRODUCTION

Consider the following variation of a planning problem: There is a finite set of K locations which
contain tasks of interest, of differing value. There is a single processor on which the tasks are to
be scheduled. Associated with each task is a task-dependent risk that, while executing that task,
the processor will be damaged and no further tasks will be processed. The objective is to find

the optimal task schedule in order to maximize the expected value of the completed tasks.

The above is an example of a class of stochastic scheduling problems known in the literature
as quiz problems (see Bertsekas [1995], Ross [1983], or Whittle {1982]). The simplest form of this
problem involves a quiz contest where a person is given a list of V questions and can answer these
questions in any order he or she chooses. Question i will be answered correctly with probability p,
and the person will then receive a reward v;. At the first incorrect answer, the quiz terminates
and the person is allowed to keep his or her previous rewards. The problem is to choose the
ordering of questions so as to maximize expected rewards.

The problem can be viewed in terms of dynamic programming (DP for short), but can
more simply be viewed as a deterministic combinatorial problem, whereby we are seeking an
optimal sequence in which to answer the questions. It is well-known that the optimal sequence is
deterministic, and can be obtained using an interchange argument; questions should be answered
in decreasing order of p;vi/(1 — p;). This will be referred to as the indez policy. An answer order
is optimal if and only if it corresponds to an index policy. Another interesting simple policy
for the quiz problem is the greedy policy, which answers questions in decreasing order of their
expected reward p;v;. A greedy policy is suboptimal, essentially because it does not consider the

future opportunity loss resulting from an incorrect answer.

Unfortunately, with only minor changes in the structure of the problem, the optimal solution
becomes much more complicated (although DP and interchange arguments are still relevant).

Examoples of interesting and difficult variations of the problem involve one or more of the following

characteristics:

(a) A limit on the maximum number of questions that can be answered, which is smaller than
the number of questions N. To see that the index policy is not optimal anymore, consider
the case where there are two questions, only one of which may be answered. Then it is

optimal to use the greedy policy rather than the index policy.

(b) A time window for each question, which constrains the set of time slots when each question

may be answered. Time windows may also be combined with the option to refuse answering

2




1. Introduction

a question at a given period, when either no question is available during the period, or

answering any one of the available questions involves excessive risk.

(c) Precedence constraints, whereby the set of questions that can be answered in a given time
slot depends on the immediately preceding question, and possibly on some earlier answered

questions.

(d) Sequence-dependent rewards, whereby the reward from answering correctly a given question
depends on the immediately preceding question, and possibly on some questions answered

earlier.

It is clear that the quiz problem variants listed above encompass a very large collection of
practical scheduling problems. The version of the problem with time windows and precedence
constraints relates to vehicle routing problems (involving a single vehicle). The version of the
problem with sequence-dependent rewards, and a number of questions that is equal to the max-
imum number of answers relates to the traveling salesman problem. Thus, in general, it is very
difficult to solve the variants described above exactly.

An important feature of the quiz problem, which is absent in the classical versions of vehicle
routing and traveling salesman problems is that there is a random mechanism for termination
of the quiz. Despite the randomness in the problem, however, in all of the preceding variants,
there is an optimal open-loop policy, i.e., an optimal order for the questions that does not depend
on the random outcome of the earlier questions. The reason is that we do not need to plan the
answer sequence following the event of an incorrect answer, because the quiz terminates when
this event occurs. Thus, we refer to the above variations of the quiz problem as deterministic
quiz problems.

There are variants of the quiz problem where the optimal order to answer questions depends

on random events. Examples of these are:

(e) There is a random mechanism by which the quiz taker may miss a turn, i.e., be denied the
opportunity to answer a question at a given period, but may continue answering questions

at future time periods.

(f) New questions can appear and/or old questions can disappear in the course of the quiz
according to some random mechanism. A similar case arises when the start and end of the

time windows can change randomly during the quiz.

(g) There may be multiple quiz takers that answer questions individually, and drop out of the

quiz upon their own first error, while the remaining quiz takers continue to answer questions.
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(h) The quiz taker may be allowed multiple chances, i.e., may continue answering questions up

to a given number of errors.

(i) The reward for answering a given question may be random and may be revealed to the quiz

taker at various points during the course of the quiz.

The variants (e)-(i) of the quiz problem described above require a genuinely stochastic for-
mulation as Markovian decision problems. We refer to these variations in the paper as stochastic
quiz problems. They can be solved exactly only with DP, but their optimal solution is pro-
hibitively difficult. This is because the states over which DP must be executed are subsets of

questions, and the number of these subsets increases exponentially with the number of questions.

In this paper, we develop suboptimal solution approaches for deterministic and stochastic
quiz problems that are computationally tractable. In particular, we focus on rollout algorithms,
a class of suboptimal solution methods inspired from the policy iteration methodology of DP and
the approximate policy iteration methodology of neuro-dynamic programming (NDP for short)
One may view a rollout algorithm as a single step of the classical policy iteration method, startmv
from some given easily implementable policy. Algorithms of this type have been sporadically
proposed in several DP application contexts. They have also been proposed by Tesauro [1996] in
the context of simulation-based computer backgammon (the name “rollout” was introduced by
Tesauro as a synonym for repeatedly playing out a given backgammon position to calculate by

Monte Carlo averaging the expected game score starting from that position).

Rollout algorithms were first proposed for the approximate solution of discrete optimization
problems by Bertsekas and Tsitsiklis [1996], and by Bertsekas, Tsitsiklis, and Wu [1997], and the
methodology developed here for the quiz problem strongly relates to the ideas in these sources.
Generally, rollout algorithms are capable of magnifying the effectiveness of any given heuristic
algorithm through sequential application. This is due to the policy improvement mechanism of
the underlying policy iteration process.

In the next section, we introduce rollout algorithms for deterministic quiz problems, where
the optimal order for the questions from a given period onward does not depend on earlier
random events. In Section 3, we provide computational results indicating that rollout algorithms
can improve impressively on the performance of their underlying heuristics. In Sections 4 and
5, we extend the rollout methodology to stochastic quiz problems [cf. variants (e)-(i) above],
that require the use of stochastic DP for their optimal solution. Here we introduce the idea of
multiple scenaria for the future uncertainty starting from a given state, and we show how these

scenaria can be used to construct an approximation to the optimal value function of the problem




2. Rollout Algorithms for Deterministic Quiz Problems

using NDP techniques and a process of scenario aggregation. Finally, in Section 6, we provide

computational results using rollout algorithms for stochastic quiz problems.

2. ROLLOUT ALGORITHMS FOR DETERMINISTIC QUIZ PROBLEMS

Consider a variation of a quiz problem of the type described in (a)-(c) above. Let N
denote the number of duestions available, and let M denote the maximum number of questions
which may be attempted. Associated with each question ¢ is a value v;, and a probability of
successfully answering that question p;. Assume that there are constraints such as time windows
or precedence constraints which restrict the possible question orders. Denote by V(i1,...,im)

the expected reward of a feasible question order (i1,...,tMm):

V(ir, ... in) = i (Viy + Piy (Vig + Pig (- - + PipgVipg) -+ ))- (2.1)
For an infeasible question order (i1,...,iar), we use the convention
V(it,...,im) = —00.

The classical quiz problem is the case where M = N, and all question orders are feasible.
In this case, the optimal solution is simply obtained by using an interchange argument. Let ¢

and j be the kth and (k + 1)st questions in an optimally ordered list
L= (i1, iketss o tht2s- - -1 AN)-
Consider the list
L' = (i1, ) ike1y G By ikt2s- - -2 N)
obtained from L by interchanging the order of questions i and j. We compare the expected
rewards of L and L’. We have
E{reward of L} = E{reward of {i1,...,ik-1}}
+ piy -+ i (Pivi + PiD;V5)
+Diy -+ Pig_, Pip; E{reward of {ixs2,...,in}}
E{reward of L'} = E{reward of {i1, ceorik-1}}
+Diy - Pir_y (P3Vj + PiPivi)
+pi, - - - i, pipi E{reward of {ixiz,. .. Jin}}

5




2. Rollout Algorithms for Deterministic Quiz Problems
Since L is optimally ordered, we have

E{reward of L} > E{reward of L'},

so it follows from these equations that
pivi + PipjVj = PivV; + Pipivi

or equivalently

" 0
It follows that to maximize expected rewards, questions should be answered in decreasing order
of pivi/(1 — p:), which yields the index policy.

Unfortunately, the above argument breaks down when either M < N, or there are con-
straints on the admissibility of sequences due to time windows or precedence constraints. For
these cases, we can still use heuristics such as the index policy or the greedy policy, but they will
not provide optimal performance.

Consider a heuristic algorithm, which given a partial schedule P = (31,...,1%) of distinct
questions constructs a complementary schedule P = (ik+1,- .., inm) of distinct questioﬁs such that

PP = 0. The heuristic algorithm is referred to as the base heuristic. We define the heuristic

reward of the partial schedule P as
H(P) = V(i1,..,iky tk+1-- -2 EM)- (2.2)

If P = (i1,...,im) is a complete solution, by convention the heuristic reward of P is the true

expected reward V (i1, ... ,im)-
Given a base heuristic, the corresponding rollout algorithm constructs a complete schedule

in M iterations, one question per iteration. The rollout algorithm can be described as follows:
At the 1st iteration it selects question ¢ according to

iy = arg max_H(i), (2.3)

i=1,...,

and at the kth iteration (k > 1) it selects iy according to

H(iy, ... ik-1,3),  k=2,...,M. (2.4)

ip = arg max
S Lilistiy,enrik—1}

Thus a rollout policy involves N + (N —1) +--- + (N — M) = O(MN ) applications of the

base heuristic and corresponding calculations of expected reward of the form (2.1). While this

6




2. Rollout Algorithms for Deterministic Quiz Problems

is a significant increase over the calculations required to apply the base heuristic and compute
its expected reward, the rollout policy is still computationally tractable. In particular, if the
running time of the base heuristic is polynomial, so is the running time of the corresponding
rollout algorithm. On the other hand, it will be shown shortly that the expected reward of the
rollout policy is at least as large as the one of the base heuristic.

As an example of a rollout algorithm, consider the special variant (a) of the quiz problem
in the preceding section, where at most M out of N questions may be answered and there are no
time windows or other complications. Let us use as base heuristic the index heuristic, which given
a partial schedule (i1,...,%k), attempts the remaining questions according to the index policy, in
decreasing order of p;v; /(1 —pi). The calculation of H(iy, ..., ix) is done using Eq. (2.1), once the
questions have been sorted in decreasing order of index. The corresponding rollout algorithm,
given (i1,...,ik—1) selects i, calculates H(i1,...,ik-1,8) for all i # i1,...,%k-1, using Eq. (2.1),
and then optimizes this expression over i to select ix.

Note that one may use a different heuristic, such as the greedy heuristic, in place of the
index heuristic. There are also other possibilities for base heuristics. For example, one may
first construct & complementary schedule using the index heuristic, and then try to improve this
schedule by using a 2-OPT local search heuristic, that involves exchanges of positions of pairs of
questions. One may also use multiple heuristics, which produce heuristic values Hj(i1,...,i), J =
1,...,J, of a generic partial schedule (i1,..-.,%k), and then combine them into a “superheuristic”

that gives the maximal value
H(i,... k) = j_l'Illa.XJHj('il, N AR

An important question is whether the rollout algorithm performs at least as well as its
base heuristic when started from the initial partial schedule. This can be guaranteed if the base

heuristic is sequentially consistent. By this we mean that the heuristic has the following property:

Suppose that starting from a partial schedule

P =(i1,... k1),
the heuristic produces the complementary schedule

P = (ik,.--»im)-
Then starting from the partial schedule

Pt = (i11"'7ik‘1!ik)1

7




2. Rollout Algorithms for Deterministic Quiz Problems

the heuristic produces the complementary schedule

—+ , .
P = (igsty---riM)-

As an example, it can be seen that the index and the greedy heuristics, discussed earlier,
are sequentially consistent. This is a manifestation of a more general property: many common
base heuristics of the greedy type are by nature sequentially consistent. It may be verified, based
on Eq. (2.4), that a sequentially consistent rollout algorithm keeps generating the same schedule
PUP, up to the point where by examining the alternatives in Eq. (2.4) and by calculating their
heuristic rewards, it discovers a better schedule. As a result, sequential consistency guarantees
that the reward of the schedules P U P produced by the rollout algorithm is monotonically

nonincreasing; that is, we have

H(pP+) < H(P)

at every iteration. For further elaboration of the sequential consistency property, we refer to the
paper by Bertsekas, Tsitsiklis, and Wu [1997], which also discusses some underlying connections
with the policy iteration method of dynamic programming.

A condition that is more general than sequential conéistency is that the algorithm be se-

quentially improving, in the sense that at each iteration there holds
H(P+) < H(P).

This property also guarantees that the rewards of the schedules produced by the rollout algorithm
are monotonically nonincreasing. The paper by Bertsekas, Tsitsiklis, and Wu [1997] discusses
situations where this property holds, and shows that with fairly simple modification, a rollout
algorithm can be made sequentially improving.

There are a number of variations of the basic rollout algorithm described above. In par-
ticular, we may incorporate multistep lookahead or selective depth lookahead into the rollout
framework. An example of a rollout algorithm with m-step lookahead operates as follows: at
the kth iteration we augment the current partial schedule P = (41y...,4k—1) with all possible
sequences of m questions & # i1, .. .,1ik-1. Werun the base heuristic from each of the correspond-
ing augmented partial schedules, we select the m-question sequence with maximum heuristic
reward, and then augment the current partial schedule P with the first question in this sequence.

An example of a rollout algorithm with selective two-step lookahead operates as follows: at the

kth iteration we start with the current partial schedule P = (i1, ,ik-1), and we run the base
heuristic starting from each partial schedule (i1, ... ,ik—1,1) with i # i1,...,4k—1. We then form
the subset T consisting of the n questions @ # i1,...,1k that correspond to the n best complete

8




3. Computational Experiments with Deterministic Quiz Problems

schedules thus obtained. We run the base heuristic starting from each of the partial schedules
(31,...,ik-1,3,J) withz € Tand j # i1,...,%k-1,4, and obtain a corresponding complete schedule.
We then select as next question ix of the rollout schedule the question i € T that corresponds to a
maximal reward schedule. Note that by choosing the number n to be smaller than the maximum
possible, N — k + 1, we can reduce substantially the computational fequirements of the two-step

lookahead.

3. COMPUTATIONAL EXPERIMENTS WITH DETERMINISTIC QUIZ PROBLEMS

In order to explore the performance of rollout algorithms for deterministic scheduling, we con-

ducted a series of computational experiments involving the following seven algorithms:
(1) The optimal stochastic dynamic programming algorithm.

(2) The greedy heuristic, where questions are ranked in order of decreasing p;vi, and, for each

stage k, the feasible unanswered question with the highest ranking is selected.

(3) The index heuristic, where questions are ranked in order of decreasing p;vi/(1 — pivi), and

for each stage k, the feasible unanswered question with the highest ranking is selected.

(4) The one-step rollout policy based on the greedy heuristic, where, at each stage k, for
every feasible unanswered question i, and prior sequence i1,...,1k-1, the question is chosen

according to the rollout rule (2.4), wher the function H uses the greedy heuristic as the

base policy.

(5) The one-step rollout policy based on the index heuristic, where the function H in (2.4) uses

the index heuristic as the base policy,

(6) The selective two-step lookahead rollout policy based on the greedy heuristic. At the k-th
stage, the base heuristic is used in a one-step rollout to select the best four choices for the
current question among the admissible choices. For each of these choices at stage k, the
feasible continuations at stage k + 1 are evaluated using the greedy heuristic to complete
the schedule. The choice at stage k is then selected from the sequence with the highest

evaluation.
(7) The selective two-step lookahead rollout policy based on the index heuristic.

The problems selected for evaluation involve 20 possible questions and 20 stages, which are

9




3. Computational Experiments with Deterministic Quiz Problems

small enough so that exact solution using dynamic programming is possible. Associated with each
question is a sequence of times, determined randomly for each experiment, when that question
can be attempted. Floating point values were assigned randomly to each question from 1 to 10 in
each problem instance. The probabilities of successfully answering each question were also chosen
randomly, between a specified lower bound and 1.0. In order to evaluate the performance of the
last six algorithms, each suboptimal algorithm was simulated 10,000 times, using independent

event sequences determining which questions were answered correctly.
Our experiments focused on the effects of two factors on the relative performance of the

different algorithms:

(a) The lower bound on the probability of successfully answering a question, which varied from

0.2 to 0.8

(b) The average percent of questions which can be answered at any one stage, which ranged

from 10% to 50%.

The first set of experiments fixed the average percentage of questions which can be answered
at a single stage to 10%, and varied the lower bound on the probability of successfully answering
a question across four conditions: 0.2, 0.4, 0.6 and 0.8. For each experimental condition, we gen-
erated 30 independent problems and solved them, and evaluated the corresponding performance
using 10,000 Monte Carlo runs. We computed the average performance across the 30 problems,
and compared this performance with the performance obtained using the stochastic dynamic
programming algorithm.

Table 1 shows the results of our experiments. The average performance of the greedy and
index heuristics in each condition are expressed in terms of the percentage of the optimal perfor-
mance. For low probability of success, both heuristics obtain less than half of the performance
of the optimal algorithm. The table also illustrates the improvement in performance obtained
by both the one-step rollout and the selective two-step rollout algorithms, expressed in terms
of percentage of the optimal performance. Thus, for lower bound 0.2, the average performance
across 30 problems achieved by the greedy heuristic was 41% of optimal, whereas the average
performance of the one-step rollout with the greedy heuristic as a base policy achieved on aver-
age 75% of the optimal performance, which was a 34% improvement. Furthermore, the two-step

selective rollout achieved on average 81% of the optimal performance.

The results in Table 1 show that one-step rollouts significantly improve the performance
of both the greedy and the index heuristics in these difficult stochastic combinatorial problems.

The results also illustrate that the performance of the simple heuristics improves as the average

10




3. Computational Experiments with Deterministic Quiz Problems

Minimum : ] f
H 1] t
Probability of | 0.2 04 | 0.6 0.8
Success ! : i
Greedy Heuristic |~ 41% = 50% 61% | 16%
S . i
Improvement b
Onz-step Rollog; 34% 32% 21% : 14%
Impro tb
T ;nl]:;lo:t 40% 34% 27% 14%
Index Heuristic 43% 53% 66% 80%
Improvement by o { . ’
One-step Rollout 34% 30% 23% 10%
Improvement by o ; o o z o
Two-step Rollout 38% ! 33% 24% 11%

Table 1: Performance of the different algorithms as the minimum probability of
success of answering a question varies. The numbers reported are percentage of
the performance of the optimal dynamic programming solution achieved, averaged

across 30 independent problems.

probability of success increases, thereby reducing the potential advantage of rollout strategies.
Even in these unfavorable cases, the rollout strategies improved performance levels by at least
10% of the optimal policy.

For the size of problems tested in these experiments, the advantages of using a two-step
selective lookahead rollout were small. In many cases, the performances of the one-step rollout
and the two-step selectivé lookahead rollout were identical. Nevertheless, for selected difficult
individual problems, the two-step selective lookahead rollout improved performance by as much
as 40% of the optimal strategy over the-level achieved by the one-step rollout with the same base
heuristic.

The second set of experiments fixed the lower bound on the probability of successfuﬂy
answering a question to 0.2, and varied the average percent of questions which can be answered
at any one stage across 3 levels: 10%, 30% and 50%. As before, we generated 30 independent
problems and evaluated the performance of each algorithm on each problem instance. The results
of these experiments are summarized in Table 2. As before, the performance of the greedy and
index heuristics improves as the experimental condition approaches the standard conditions of
the quiz problem, where 100% of the questions can be answered at any time. The results confirm

the trend first seen in Table 1: even in cases where the heuristics achieve good performance,

11




4. Rollout Algorithms for Stochastic Quiz Problems

Problem Density 0.1 5 03 0.5

Greedy Heuristic |~ 41%  58%  76%

Improvement by

One-step Rollout 34% 28% 15%
Index Heuristic 43% 68% 85%
ey | o

One-step Rollout

Improvement by
Two-step Rollout

W% | 4% %

Table 2: Performance of the different algorithms as the average number of
questions per period increases. The numbers reported are percentage of the per-
formance of the optimal dynamic programming solution achieved, averaged across
30 independent pt;oblems.

rollout strategies offer significant performance gains.

The results in Tables 1 and 2 suggest that the advantages of rollout strategies over the
greedy and index heuristics increase proportionately with the risk involved in the problem. By
constructing a feasible strategy for the entire horizon for evaluating the current decision, rollout
strategies account for the limited future accessibility of questions, and compute tradeoffs between
future accessibility and the risk of the current choice. In contrast, myopic strategies such as the
greedy and index heuristics do not account for future access to questions, and thus are forced
to make risky choices when no other alternatives are present. Thus, as the risk of missing a
question increases and the average accessibility of questions decreases, rollout strategies achieve

nearly double the performance of the corresponding myopic heuristics.
4. ROLLOUT ALGORITHMS FOR STOCHASTIC QUIZ PROBLEMS

We now consider variants of the quiz problem where there is no optimal policy that is open-loop.
The situations (e)-(i) given in Section 1 provide examples of quiz problems of this type. We can

view such problems as stochastic DP problems. Their exact solution, however, is prohibitively
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4. Rollout Algorithms for Stochastic Quiz Problems

expensive.
Let us state a quiz problem in the basic form of a dynamic programming problem, where

we have the stationary discrete-time dynamic system
Tes1 = fe(To vk, wr),  k=0,1,...,N, (4.1)

that evolves over T time periods. Here zj is the state taking values in some set, u is the
control to be selected from a finite set Ux(zk), wk is a random disturbance, and fi is a given
function. We assume that the disturbance wg, k = 0,1,..., has a given probability distribution
that depends explicitly only on the current state and control. The one-stage cost function is
denoted by gk(z, u, w).

To apply the rollout framework, we need to have a base policy for making a decision
at each state-timé pair (zx, k). We view this policy as a sequence of feedback functions m =
{po0, 1, - - -, pT}, which at time k maps a state zx to a control ux(zx) € Uk(zk). The cost-to-go
of 7 starting from a state-time pair (z, k) will be denoted by

T-1
Ji(zk) = F {Z gi (xi,,u,-(a:,-),wi)} . (4.2)
i=k
The cost-to-go functions Ji satisfy the following recursion of dynamic programming (DP for

short)
Je(z) =E{g(:v,pk(z),w) + Jer1 (f (2, e(z), w)) }, k=0,1,... (4.3)

with the initial condition
Jr(z) = 0.

The rollout policy based on m is denoted by T = {fg, iy, ...}, and is defined through the

operation
i (z) = arg érg?)E{g(a:,u,w)+Jk+1(f(z,u,w))}, Yz, k=01,.... (4.4)
u T

Thus the rollout policy is a one step-lookahead policy, with the optimal cost-to-go approximated
by the cost-to-go of the base policy. This amounts essentially to a single step of the method of
policy iteration. Indeed using standard policy iteration arguments, one can show that the rollout
policy 7 is an improved policy over the base policy 7.

In practice, one typically has a method or algorithm to compute the control px(z) of the
base policy, given the state x, but the corresponding cost-to-go functions Jx may not be known
in closed form. Then the exact or approximate computation of the rollout control Ex(z) using

Eq. (4.4) becomes an important and nontrivial issue, since we need for all u € U(z) the value of

Qi(z,u) = E{g(z,u,w) + Jes1 (f(z,u,w)) }, (4.5)
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known as the Q-factor at time k. Alternatively, for the computation of T (z) we need the value

of the cost-to-go

Jk+l (f(.’L‘, u, w))

at all possible next states f(z,u,w).

In favofable cases, it is possible to compute the cost-to-go Ji(z) of the base policy = for
any time k and state z. An example is the variant of the quiz problem discussed in Sections 2
and 3, where the base policy is an open-loop policy that consists of the schedule generated by
the index policy or the greedy policy. The corresponding cost-to-go can then be computed using
Eq. (2.1). In general, however, the computation of the cost-to-go of the base policy may be much
more difficult. In particular, when the number of states is very large, the DP recursion (4.3) may
be infeasible.

A conceptually straightforward approach for computing the rollout control at a given state
z and time k is to use Monte Carlo simulation. This was suggested by Tesauro [TeG96] in the
context of backgammon. To implement this approach, we consider all possible controls u € U(x)
and we generate a “large” number of simulated trajectories of the system starting from z, using

u as the first control, and using the policy 7 thereafter. Thus a simulated trajectory has the form
Tip1 = f(zi, pilz:), wi), i=k+1,...,T-1,

where the first generated state is

T+l = f(IL', u,'U)k),

and each of the disturbances wg,...,wr-1 is an independent random sample from the given
distribution. The costs corresponding to these trajectories are averaged to compute an approxi-
mation Qx(z,u) to the Q-factor Qk(z, u). The approximation becomes increasingly accurate as
the number of simulated trajectories increases. Once the approximate Q-factor Q(z,u) corre-
sponding to each control u € U(z) is computed, we can obtain the (approximate) rollout control
fix(z) by the minimization

fi(z) = arg min Qu(z, ).

Unfortunately, this method suffers from the excessive computational overhead of the Monte
Carlo simulation. We are thus motivated to consider approximations that involve reduced over-
head, and yet capture the essense of the basic rollout idea. We describe next an approximation
approach of this type, and in the following section, we discuss its application to stochastic schedul-

ing problems.
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4. Rollout Algorithms for Stochastic Quiz Problems
Approzrimation Using Scenaria

Let us suppose that we approximate the cost-to-go of the base policy 7 using certainty equivalence.
In particular, given a state zx at time k, we fix the remaining disturbances at some nominal values
Wk, Wk41,-- - » DT—1, and we generate a state and control trajectory of the system using the base
policy 7 starting from z; and time k. The corresponding cost is denoted by Ji(zx), and is used
as an approximation to the true cost Jix(zx). The approximate rollout control based on 7 is given
by
fr(z) = arguénui?x) E{g(zr,u,w) + Jir1 (f(zr,u,w)) }-

We thus need to run 7 from all possible next states f(zx,u,w) and evaluate the corresponding
approximate cost-to-go Je+1 ( f(zg, u, w)) using a single state-control trajectory calculation based
on the nominal values of the uncertainty.

The certainty equivalent approximation involves a single nominal trajectory of the remaining
uncertainty. To strengthen this approach, it is natural to consider multiple trajectories of the
uncertainty, called scenaria, and to construct an approximation to the relevant Q-factors that
involves, for every one of the scenaria, the cost of the base policy #. Mathematically, we assume

that we have a method, which at each state z, generates M uncertainty sequences
wm(zk)=(w}c",wg‘+1,...,w![’.‘_1), m=1,...,M.

The sequences w™(zx) are the scenaria at state zx. The cost Ji(zx) of the base policy is

approximated by

M
Ji(zk,r) =10 + Y rmCom(2k), (4.6)
m=1
where 7 = (r0,71,...,7M) is a vector of parameters to be determined, and Cn(zk) is the cost

corresponding to an occurence of the scenario w™ (zx), when starting at state ) and using the
base policy. We may interpret the parameter rm as an “aggregate weight” that encodes the
aggregate effect on the cost-to-go function of the base policy of uncertainty sequences that are
similar to the scenario w™(zx). We will assume for simplicity that r does not depend on the time
index k or the state zk. However, there are interesting possibilities for allowing a dependence of
r on k or zx (or both), with straightforward changes in the following methodology. Note that, if
ro = 0, the approximation (4.6) may be also be viewed as limited simulation approach, based on

just the M scenaria w™(z), and using the weights rm as “aggregate probabilities.”

Given the parameter vector r, and the corresponding approximation jk(a:k,r) to the cost

of the base policy, as defined above, a corresponding approximate rollout policy is determined by

fix(z) = arg min Qr(z,u,7), (4.7)

uelU(z)
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where
Qi(z,u,7) = E{g(z,u,w) + Jer1(f(z, v, w),7) } (4.8)

is the approximate Q-factor. We envision here that the parameter r will be determined by an
off-line “training " process and it will then be used for calculating on-line the approximate rollout
policy as above.

One may use standard methods of Neuro-Dynamic Programming (NDP for short) to train
the parameter vector r. In particular, we may view the approximating function Ji (zk,r) of Eq.
(4.6) as a linear feature-based architecture where the scenaria costs Cm (zx) are the features at
state zr. One possibility is to use a straightforward least squares fit of Ji(zk,) to random
sample values of the cost-to-go Jix(zk). These sample values may be obtained by Monte-Carlo
simulation, starting from a representative subset of states. Another possibility is to use Sutton’s
TD()). We refer to the books by Bertsekas and Tsitsiklis [BeT96] and Barto and Sutton [BaS97],
and the survey by Barto et. al. [BBS95] for extensive accounts of training methods and relating
techniques.

We finally mention a variation of the scenario-based approximation method, whereby only a
portion of the future uncertain quantities are fixed at nominal scenario values, while the remaining
uncertain quantities are explicitly viewed as random. The cost of scenario m at state Ty is now
a random variable, and the quantity Cm(zx) used in Eq. (4.6) should be the expected cost of
this random variable. This variation is appropfiate and makes practical sense as long as the

computation of the corresponding expected scenaria costs Cm(zx) is convenient.

5. ROLLOUT ALGORITHMS FOR STOCHASTIC QUIZ PROBLEMS

We now apply the rollout approach based on certainty equivalence and scenaria to variants of
the quiz problem where there is no optimal policy that is open;loob, such as the situations (e)-(i)
given in Section 1. The state after questions i1, ...,k have been successfully answered, is the
current partial schedule (i1,...,i), and possibly the list of surviving quiz takers [in the case
where there are multiple quiz takers, as in variant (g) of Section 1]. A scenario at this state

corresponds to a (deterministic) sequence of realizations of some of the future random quantities,

such as:

(1) The list of turns that will be missed in answer attempts from time k onward; this is for the

case of variant (e) in Section 1.
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(2) The list of new questions that will appear and old questions that will disappear from time

k onward; this is for the case of variant (f) in Section 1.

(3) The specific future times at which the surviving quiz takers will drop out of the quiz; this

is for the case of variant (g) in Section 1.

Given any scenario of this type at a given state, and a base heuristic such as an index or
a greedy policy, the corresponding value of the heuristic [cf. the cost Cm(zx) in Eq. (4.6)] can
be easily calculated. The approximate value of the heuristic at the given state can be computed
by weighing the values of all the scenaria using a weight vector 7, as in Eq. (4.6). In the case of
a single scenario, a form of certainty equivalence is used, whereby the value of the scenario at a
given state is used as the (approximate) value of the heuristic starting from that state. In the
next section we present computational results for the case of a problem, which is identical to the

one tested in Section 3, but a turn may be missed with a certain probability.

6. COMPUTATIONAL EXPERIMENTS WITH STOCHASTIC QUIZ PROBLEMS

The class of quiz problemé which we used in our computational experiments are similar to
the problems used in Section 3, with the additional feature that an attempt to answer a question
can be blocked with a prespecified probability, corresponding to the case of variant (e) in Section
1. The problems involve 20 questions and 20 time periods, where each question has a prescribed
set of times where it can be attempted. The result of a blocking event is a loss of opportunity
to answer any question at that stage. Unanswered questions can be attempted in future stages,
until a wrong answer is obtained.

In order to evaluate the performance of the base policy for rollout algorithms, we use
a particular version of the scenaria approach described previously. Assume that the blocking
probability is denoted by P,. At any stage k, given M stages remaining and this blocking
probability, the equivalent scenario duration is computed as the smallest integer greater than or

equal to the expected number of stages remaining:

Te =[Py x (M — k)]
Using this horizon, the expected cost of a base heuristic is computed as the cost incurred for an
equivalent deterministic quiz problem starting with the current state, with remaining duration

T.. The cost of the strategy obtained by the base policy is approximated using the resulting
value function for this horizon, as computed by Eq. (2.1).
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As in Section 4, we used seven algorithms in our experiments:
1. The optimal stochastic dynamic programming algorithm.

2. The greedy heuristic, where questions are ranked in decreasing pivi, and, for each stage

k, the feasible unanswered question with the highest ranking is selected.

3. The index heuristic, where questions are ranked by decreasing p;vi/(1 — pivi), and for
each stage k, the feasible unanswered question with the highest ranking is selected.

4. The one-step rollout policy based on the greedy heuristic and certainty equivalence policy
evaluation, where, at each stage k, for every feasible unanswered question ix and prior sequence
i1,...,1k—1, the question is chosen according to the rollout rule (2.4). The function H uses the
greedy heuristic as the base policy, and its performance is approximated by the performance of
an equivalent non-blocking quiz problem as described above.

5. The one-step rollout policy based on the index heuristic and certainty equivalence policy
evaluation, where the function H in (2.4) uses the index heuristic as the base policy, and is
approximated using the certainty equivalence approach described previously.

6. The selective two-step lookahead rollout policy based on the greedy heuristic, with
certainty equivalence policy e;valuation corresponding to an equivalent non-blocking quiz problem
with horizon described as above.

7. The selective two-step lookahead rollout policy based on the index heuristic, with cer-
tainty equivalence policy evaluation corresponding to an equivalent non-blocking quiz problem
with horizon described as above.

The problems selected for evaluation involve 20 possible questions and 20 stages, which are
small enough so that exact solution using dynamic programming is possible. Associated with each
question is a sequence of times, determined randomly for each experiment, when that question
can be attempted. Floating point values were assigned randomly to each question from 1 to 10 in
each problem instance. The probabilities of successfully answering each question were also chosen
randomly, between a specified lower bound and 1.0. In order to evaluate the performance of the
last six algorithms, each suboptimal algorithm was simulated 10,000 times, using independent
event sequences determining which question attempts were blocked and which questions were
answered correctly.

Our experiments focused on the effects of three factors on the relative performance of the
different algorithms:

a) The lower bound on the probability of successfully answering a question, which varied

from 0.2 to 0.8
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b) The average percent of questions which can be answered at any one stage, which ranged
from 10% to 50%.

¢) The probability that individual question attempts will not be blocked, ranging from 0.3
to 1.0.

As in Section 4, for each experimental condition, we generated 30 independent problems
and solved them with each of the 7 algorithms, and evaluate the corresponding performance using

10,000 Monte Carlo runs. The average performance is reported for each condition.

Minimum ; *
Probability of ! 0.2 x 0.4 0.6 0.8
Success
Greedy Heuristic 54% 63% 73% 82%
th
omsep o | 3% 2% 1% &%
Improvement by . . , .
Two-step Rollout 33% 26% 17% é 6%
Index Heuristic 56% 67% 78% 84%
Improvement by . . . )
One-step Rollout 30% 22% 12% 4%
I tb
T:zf:;;nl‘::llo:t 31% 3% 1 12% 4%

Table 3: Performance of the different algorithms for stochastic quiz problems as
the minimum probability of success of answering a question varies. The numbers
reported are percentage of the performance of the optimal dynamic programming
solution achieved, averaged across 30 independent problems.

The first set of experiments fixed the average percentage of questions which can be answered
at a single stage to 10%, the probability that question attempts will .not be blocked to 0.6,
and varied the lower bound on the probability of successfully answering a question across four
conditions: 0.2, 0.4, 0.6 and 0.8. Table 3 shows the results of our experiments. The average
performance of the greedy and index heuristics in each condition are expressed in terms of the
percentage of the optimal performance. The results for this experiment are very similar to the
results we obtained earlier for deterministic quiz problems. Without rollouts, the performance of
either heuristic is poor, whereas the use of one-step rollouts can recover a significant percentage

of the optimal performance. As the risk associated with answering questions decreases, the
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performance of the heuristics improves, and the resulting improvement offered by the use of
rollouts decreases. On average, the advantage of using selective two-step rollouts is small, but

this advantage can be large for selected difficult problems.

|

Problem Density . 0.1 § 03 0.5
Greedy Heuristic 54% 5 65% 8%
Improvement by 1% 23% 13%
One-step Rollout

Improvement by 33% 24% 13%
Two-step Rollout : ;

i !

Index Heuristic 56% ) 74% : 87%
Improvement by 30% 15% 5%
One-stepRollout | | |
Improvement by 31% 16% 5%
Two-step Rollout

Table 4: Performance of the different algorithms on stochastic quiz problems
as the average number of questions per period increases. The numbers reported
are percentage of the performance of the optimal dynamic programming solution
achieved, averaged across 30 independent problems.

The second set of experiments fixed the lower bound on the probability of successfully
answering a question to 0.2, and varied the average percent of questions which can be answered
at any one stage across 3 levels: 10%, 30% and 50%. The results of these experiments are
summarized in Table 4. As in the deterministic quiz problems, the performance of the greedy
and index heuristics improves as the number of questions which can be answered at any one time
approaches 100%. The results also show that, even in cases where the heuristics achieve good

performance, rollout strategies offer significant performance gains.

The last set of experiments focused on varying the blocking probability that an attempt to
answer a question at any one time is not blocked over 3 conditions: 0.3, 0.6 and 1.0. The last
condition corresponds to the deterministic quiz problems of Section 3. Table 5 contains the results
of these experiments. As the blocking probability increases, there is increased randomness as to
whether questions may be available in the future. This increased randomness leads to improved
performance of myopic strategies, as shown in Table 5. Again, the advantages of the rollout

strategies are evident even in this favorable case.
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Probability of ; |
Non-Blocking 0.3 i 0.6 ; 1
Greedy Heuristic 73% 54% 41%
Improvement by . . i ,
One-step Rollout 17% : 31% : 34%
Improvement by . . ,
Two-step Rollout 18% 33% 40%

Index Heuristic 75% 56% 43%
Improvement by o o o
One-step Rollout 16% 30% ! 34%
Improvement by 0 o .
Two-step Rollout 16% 31% ! 38%

Table 5: Performance of the different algorithms on stochastic quiz problems as
the probability of non-blocking increases. The numbers reported are percentage of
the performance of the optimal dynamic programming solution achieved, averaged
across 30 independent problems.

The results in Tables 3, 4 and 5 provide ample evidence that rollout strategies offer superior

performance for stochastic quiz problems, while maintaining polynomial solution complexity.

7. CONCLUSION

In this paper, we studied stochastic scheduling problems arising from variations of a classical
search problem known as a quiz problem. We grouped these variations into two classes: the
deterministic quiz problems, for which optimal strategies can be expressed as deterministic se-
quences, and the stochastic quiz problems, for which optimal strategies are feedback functions
of the problem state. For either of these classes, the computational complexity of obtaining ex-
act optimal solutions grows exponentially with the size of the scheduling problem, limiting the
applicability of exact techniques such as stochastic dynamic programming.

In this paper, we develop near-optimal solution approaches for deterministic and stochastic
quiz problems that are computationally tractable based on the use of rollout algorithms. For
stochastic quiz problems, we introduced a novel approach to policy evaluation which resulted

in polynomial complexity algorithms for obtaining near-optimal strategies. Our computational
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Abstract

We consider the problem of planning the paths of multiple vehicles in observing a battle space with the pos-
sibility of vehicle destruction. The model we develop is a special case of the more general scheduling problem
described in [1]. Our goal is to illustrate the significant complexities which arise when stochastic effects
(random vehicle destruction) are introduced into the model. To this end, we define a particular instance the
scheduling problem which will serve as a testbed for various methodologies. Dynamic programming is the
classical framework which characterizes solutions to our path planning problem and drives the algorithmic
development. While computationally expensive, the dynamic programming recursion can be employed to
solve the stochastic problem directly. Similarly, dynamic programming can be used to solve various determin-
istic auxiliary problems whose solutions provide heuristic solutions to the stochastic problem. Unfortunately,
even though the auxiliary problems are less involved than the original stochastic problem, the computational
requirements of brute-force dynamic programming are roughly equivalent. A more promising approach to
solving the deterministic auxiliary problems is to relax the integer constraints and obtain quick solutions
through proven linear programming and network optimization techniques. This paper will summarize the
work done so far and will provide guidelines for future efforts.

1 Introduction

Planning and scheduling problems arise in many important Air Force operations, from tasking multi-platform
missions for information collection to development of tactical air operations. In most of these problems,
limited surveillance, logistics and combat resources are carefully scheduled to accomplish a set of missions.
However, information regarding the battle space for the missions contains uncertainty, is incomplete, is not
always correct, and evolves continuously. This has led to the development of a suite of sensors which are
capable of providing real-time information on the progress of the missions, which can be used for replanning
in response to new information. In order to exploit this information, new techniques are necessary for the
real-time solution of large scheduling and planning problems in the presence of uncertainty.

In this paper, we consider a simple class of mission planning problems, involving the scheduling of multiple
vehicles to perform multiple risky missions each. A general form of this model has been described in in [1].
In this model, vehicle motion is constrained to a directed graph, the nodes of which may contain missions
which must be performed. Vehicles which visit a node may choose to perform the mission associated with
that node, at the risk of being destroyed. The state of the problem at any stage consists of the location of
the vehicles which are still alive and the time; future uncertainty enters into the state evolution as vehicles
may be destroyed in risky situations.

From a mathematical perspective, this class of scheduling problems can be formulated as Markov decision
problems [4]. These problems can be solved exactly using the stochastic dynamic programming algorithm.
However, even for relatively small graphs, the amount of time required to find the optimal stochastic dynamic
programming solution is far greater than allowed for real-time applications.

In this paper, we develop and evaluate several approximations to the exact stochastic dynamic program-
ming algorithm which reduce the computation requirements while maintaining the feedback planning aspects
of stochastic dynamic programming. The approximate algorithms are based on constructing approximations
of the optimal cost-to-go function, in a manner similar to the methodology of neuro-dynamic programming
(3]. In particular, we focus on rollout algorithms, a class of suboptimal solution methods inspired from the
policy iteration methodology of DP and the approximate policy iteration methodology of neuro-dynamic
programming. Algorithms of this type have been proposed by Tesauro (5] in the context of simulation-based
computer backgammon.




Rollout algorithms were first proposed for the approximate solution of discrete optimization problems by
Bertsekas and Tsitsiklis (3], and by Bertsekas, Tsitsiklis, and Wu [2], and the methodology developed here
for the quiz problem strongly relates to the ideas in these sources. Generally, rollout algorithms are capable
of magnifying the effectiveness of any given heuristic algorithm through sequential application. This is due
to the policy improvement mechanism of the underlying policy iteration process. ‘

In addition to rollout algorithms, we also discuss other approaches for obtaining approximate cost-to-go
values. These approaches include using dynamic programming to solve various deterministic auxiliary prob-
lems whose solutions provide heuristic solutions to the stochastic problem, and relaxing integer constraints
on the schedule to obtain quick solutions through linear programming and network optimization techniques.

We now outline the remainder of this report. In Section 2 we start with a verbal description of the path
planning problem. This is followed by a more formal description in mathematical notation. In Section 3, we
describe the solution approaches which we propose for the path planning problem. In Section 4, we present
our experimental results. The main observation here is that the presence of uncertainty makes a difference:
as would one expect, the qualitative nature of the optimal routing policy depends on the probabilities of
vehicle destruction. We offer some brief conclusions in 6.

2 A Model for Multiplatform Path Planning

In this section we present a model which captures the inherent difficulty of multiplatform path planning with
stochastic uncertainty. We consider the situation faced by a decisionmaker who requires more information
about specific regions. We suppose that there is a finite set of regions of interest, each region corresponding
to a node, along with a finite set of geographically significant way points, which are the positions (nodes) to
which various reconnaissance platforms can be sent. We assume that the regions-of-interest and way points
are connected by a finite number of arcs which are the relatively safe conduits through which reconnaissance
vehicles may travel, forming a graph. The commander has access to a finite number of reconnaissance vehicles
which can be routed to the various nodes on the graph in order to gain as much information as possible on
a finite time-horizon. To keep the model simple, we assume that the reconnaissance vehicles are identical.
In addition, we assume:

1. the vehicles respond to routing commands on a discrete stage basis,
2. they are able to transmit what they observe immediately upon encountering a region of interest,
3. they each require one unit of (discrete) time to traverse any arc on the graph,

4. for a given arc on the graph, each vehicle experiences the same arc-dependent risk of being destroyed
(at a given cost), and

5. all vehicles are initially located at an origin node of the graph to which they must return by the end
of the mission time (or else a penalty is paid).

When a region of interest is first visited the desired information about that region is gained deterministically,
regardless of which vehicle arrives. (The value of the reconnaissance does not increase with the number of
vehicles which arrive, if two or more arrive simultaneously.) We leave open the possibility that future revisits
will also be worthwhile, depending on random events. The number of worthwhile visits will not be known a
priori but will be revealed as a the mission progresses.

We now describe the model on a more formal level. Let N = {0,1,..., Ny} be the set of nodes of
the graph (including regions of interest as well as way points). Let node 0 represent the origin node from
which the vehicles depart and to which they should try to return (if possible). Generically, all nodes in
N are regions of interest; however, some of these may always offer zero value for visits. For each node
i € N, let z;(t) € X, represent the value-state of the node at time ¢ (directly observed by the commander),
which serves as an index determining the immediate value v;(x;(t)) of the next visit to node i. (Because
the vehicle transmits its findings without delay, the reward is accrued immediately.) We assume that each
node’s value-state can take on only a finite set of values, and the value-state changes stochastically according
to an acyclic Markov chain every time a vehicle arrives. Let P; be the transition probability matrix for node
1’s value-state transition process.




Let A(i) C N be the subset of nodes j for which there is an arc from node 7 to j. This corresponds to
the set of movement-options available to a vehicle located at node i. Let B(i) C N be the subset of nodes
j for which there is an arc from j to node i. Note that we do not prohibit self-loops. That is, we may have
i € A(1) (in which case it must also be true that i € B(3)). Let N4 be the number of directed arcs in this
graph representation of the problem. If the graph is symmetric, then A(i) = B(i) for all i € N. Given i and
j € A(3), p;j represents the probability of surviving the transition from i to j. If the vehicle does not survive
the transition, then it is lost at a cost of Cp. Otherwise, if a vehicle survives to the end of the mission, but
only manages to make it back to node i € N, then a cost of ¢; > 0 is incurred, where co = 0. The goal is to
control the movement of the vehicles on a time horizon of T stages, seeking to maximize the expected net
value of the reconnaissance. We assume that Ny vehicles are available initially.

3 Solution Approaches

Our model for multiplatform path planning takes the form of a large scale stochastic optimal control problem
to which the classical framework of dynamic programming applies. Even without the possibility of vehicle
destruction, we have a very difficult optimization problem on our hands. Indeed, deterministic vehicle routing
problems are recognized to be among the most difficult of optimization problems {6}, and our introduction
of stochastic effects such as random vehicle destruction, while well-motivated, only serves to complicate
matters. Thus, since the methods of dynamic programming are feasible for only very small problems, we are
faced with the necessity of using approximations.

A nice feature of our model is the fact that one can “build up” a solution for the case of n vehicles by
first solving the (easier) problems involving 1,2,...,n—1 vehicles, respectively. The reason for this is that
the underlying controlled Markov chain is acyclic in the sense that once a vehicle is destroyed it cannot come
back to life. This opens up the possibility of using ezact solutions to endgames in a more general methodology
involving approximate dynamic programming. Another interesting feature of the model is that there exist
optimal policies which are “quasi-open loop” in the sense that the feedback is only important when vehicles
are destroyed or when the value“states of regions of interest (randomly) change. Given a fixed number of
remaining vehicles, the vehicles can be optimally routed by making a schedule of future transitions, and this
plan would apply until a vehicle is destroyed or the value-state of a region of interest changes. Unfortunately,
the formulation of such a plan will always involve accounting for the stochastic perturbations can take place
in every time period, so the inherent difficulty of computing optimal solutions remains.

3.1 Stochastic Dynamic Programming

The model presented in Section 2 can be interpreted formally as a stochastic dynamic program. The re-
connaissance “system” can be characterized by the number and locations of all of the vehicles and the
value-states of all of the regions of interest. As a result, the number of possible system-states is finite, but
large. In fact, the number of states is equal to N, N -Hf;“{]XA, where | X;| is the number of value states for
node i. Knowing the amount of time remaining in the mission and having access to the state of the system,
the commander must choose from a finite number of routing commands for each of the remaining vehicles.
Once a routing command has been issued, the system transitions to a new state subject to the random
perturbations that are possible (eg. vehicle destruction and value-state transitions). The objective is to find
the routing policy which maximizes the expected reward over the finite time horizon of the reconnaissance
mission.

In theory, a backwards dynamic programming recursion may be used to compute the optimal cost-to-go
function for this problem. The recursion first computes the optimal expected cost-to-go with one stage of
the mission remaining and then uses this in a recursive fashion to compute the optimal expected cost-to-go
with two stages remaining. Each step of the recursion proceeds similarly:

W) = min  B{ gle() €k + D+ Jnleh+ D] | ulk)E®) ) M
HED) = HED)] @

where




£(k) is the state of the system at stage Kk,
u(k) is a profile of routing command to the remaining vehicles at stage &,
. U[€(K)] is the set of combinations of routing commands available at state £(k),

. gl€(k),&(k + 1)] is the cost of vehicles destroyed in transitioning from (k) to & (k+1),
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. hl¢ (T)] is the cost associated with the locations of all surviving vehicles at the terminal state §(T'),
and

6. the conditional expectation is over all possible outcomes §(k + 1) from £(k).

The result of this recursion is a large lookup table which contains the optimal expected long term cost from
every possible state of the system. Knowing the current state of the system £(k) and having access to the
optimal cost-to-go function allows us to pick optlmal actions as the minimizers of the right hand side of
Equation (1). An optimal policy [r* = {u,...,1%_,}] is obtained as a sequence of maps pj so that the
action p}(&(k)) minimizes the right hand side of Bellman’s equation:

wilek)) € arg omin E{ glg(k), &k + )]+ Jinl6k+1)] | u(k),&(k) }. ®3)

While theoretically sound, the dynamic programming recursion is too expensive computationally to be

used in real-world scheduling problems. This is due to the fact that large numbers of outcomes (transitions)

are possible for each profile of routing commands and, even worse, the space of routing profiles grows com-

binatorially with the number of vehicles. Even a single step of the backwards recursion may be prohibitively

expensive. Consequently, exact dynamic programming solutions are possible only for very small problems.
Results of this type are presented in Sections 4.

3.2 Approximate Dynamic Programming via Deterministic Auxiliary Problems

Given the intractability of the multiplatform path planning problem, we are forced in practice to consider
suboptimal routing policies for the vehicles. In this section we describe several potentially useful heuristics
for path planning.

One type of heuristic to consider is one based on the solution to a deterministic auxiliary problem:

Auxiliary Problem 1 (Simple Deterministic Approximation) Set the probabilities pi; = 1 for all
nodes i, j, and make the the value-state transition dynamics deterministic. Choose a schedule for the vehicles
to minimize the (deterministic) cost over the finite planning horizon.

Notice that the resulting problem, being deterministic, is considerably easier than the original stochastic
problem of Section 2. Unfortunately, what remains is still a difficult optimization problem, resembling a
vehicle routing problem where the vehicles are constrained to traveling along arcs of a graph. Unfortunately,
dynamic programming seems to be the only framework for characterizing optimal solutions to this problem.

Ignoring the difficulty of obtaining solutions to Problem 1, a reasonable heuristic at a given state is to
implement an action that would be optimal from the same state in the corresponding deterministic auxiliary
problem.

Policy 1 [r! = {a},...,uk_,}] Compute the optimal policy #* = {g, ..., E7_,} for Auziliary Problem 1.
Set ul =} forallk=0,..., T —1.

Another possibility is to think of the functions J; as heuristic value-function approximations for the
original stochastic model.

Policy 2 [r? = {,uo, .y13_,}] Having access to the optimal cost-to-go functions J¢ for Auziliary Prob-
lem 1, choose each p} such that p}[€(k)] is an action from state §(k) at stage k which minimizes the right
hand szde of Bellman’s equation, replacing the optimal cost to go function Ji , with J§,:

Wile)] € arg min  E{ gle(). €k + DI+ Taléth +1)] | ulk).€(k) } @)

(The minimum in this equation may not be unique.)




One way to see the difficulty of solving Auxiliary Problem 1 is to think of it in terms of network flows. It
is possible to reformulate Auxiliary Problem 1 as an integer network flow problem with extra side constraints
to restrict the amount of flow into nodes which offer value only for a limited number of visits. (We shall
give such a formulation for the revised model of Section 5.) It turns out that by relaxing the integer
constraints, the resulting optimal flows are fractional. Thus, solutions to Auxiliary Problem 1 cannot be
obtained polynomially by means of solutions to linear programs.

3.3 Rollouts Based on Exact Evaluation of Heuristic Cost

Given an arbitrary (possibly suboptimal) policy © = {uo, . .-, pr-1}, it is possible (in theory) to use the
dynamic programming recursion to compute the expected cost-to-go for every state of the system. That is,
by eliminating the min operation in Equation (1) and replacing u(k) with p[€(k)], we obtain the expected
cost to go functions associated with m, denoted JT, k=0,...,T. We obtain the effect of a policy iteration
by “rolling it out” as follows.

Policy 3 (Exact Rollout) [r* = {i,...,4%_,}/ Choose each u} such that p3[E(k)] s an action from
state £(k) at stage k which minimizes the right hand side of Bellman’s equation, replacing the optimal cost
to go function Jg,, with JZ ,:

prlE(R)] € E{ gle(k),&(k+ ]+ IEalek+1) | u(k) }. (5)

arg min
u(k)eU[E(k)]
(The minimum in this equation may not be unique.)

This policy derives its name from the fact that, in practice, the evaluations J{ [€(k), k] often are not computed
precisely but are estimated through online Monte Carlo simulation of the original policy . (Thus, the
evaluations are made by “rolling-out” the die.) However, whenever we refer to Policy 3, we imply that the
evaluations of the base policy are exact. Of course, exact evaluations are impractical for most real-world
problems, so this technique only applies for very small problems. Results of this type are presented in
Section 4.

4 Experimental Results, Part 1

We present in this section some computational results for the path planning problem. The experimentation
we describe here is based on some initial implementations of the approaches described previously. In the
following subsection we give a precise description of the path planning scenario used in these experiments.
We follow that with a brief summary of our experimental findings.

The algorithms considered include the optimal dynamic programming algorithms for both the stochastic
problem as well as Auxiliary Problem 1. It also computes (exactly) the expected cost-to-go function asso-
ciated with Policy 1 and uses this to compute the (exact) cost-to-go associated with the rollout scheme of
Policy 3.

4.1 An Instance of the Model

We consider an instance of the model in Section 2 involving two vehicles which must traverse the graph
shown in Figure 1. The arcs in the graph are bidirectional, with thick lines representing risk-free transitions
and thin lines representing transitions that are successful with the indicated probabilities. Nodes 5, 8, 9, 11,
12, and 13 are regions of interest, and the remaining nodes are simply geographic way points. Nodes 8 and
9 offer 50 points each for first visits, and 0 points for every other successive visit. Similarly, nodes 11 and 13
offer 75 points for first visits, and node 12 offers 150 points for a first visit. Node 5 is special in the sense that
it offers 500 points for the first visit, and then with probability p offers 500 points for the second visit (and
0 points thereafter) and with probability 1 —p offers 0 points for the second and all remaining visits. Thus,
node 5 is the “big win” in this scenario, offering a minimum of 500 and up to 1000 points, to be determined
immediately after the first visit. We impose a relatively short time horizon, between 8 and 20 stages, with
a 200 point penalty for each vehicle that fails to return home, to force the decision maker to think carefully




about how to proceed. Notice that the circuits {0,1,2,3,4,5,4,3,2,1, 0} and {0,6,7,10,11,12,13,10,7,6,0}
each involve 10 transitions. Thus, it is not clear a priori whether

1. to send the vehicles on separate tracks (a naive attempt to acquire most of the value),

2. to send vehicles along redundant tracks (to maximize the probability of making it to the most valuable
node), or

3. to send vehicles out with some other routing philosophy in mind.

Notice that we allow self-loops only at nodes 0 and 5. In our experimental results we adjust the values of
the parameters (p;,p2,p3,p, and T') to see the qualitative nature of the various solutions. To be clear, in
defining Auxiliary Problem 1 for this scenario, we set p1 = p2 = p3 = OQandp=1.

4.2 Results
2

Figures 2 through 7 illustrate the relative performances and behavior of four different policies 7*, 71, 72,
and 73 for a number of different settings of the parameters p, p1, p2, p3, and T. The policies are:

1. 7* is the optimal stochastic dynamic programming policy for this problem.
2. w! is the policy generated by the nave deterministic approximation.

3. w2 is the policy obtained by approximate dynamic programming, using the deterministic cost of the
nave approximation as a cost-to-go approximation. i

4. 73 is the policy obtained by rollout, using the exact cost-to-go evaluation associated with the nave
deterministic approximation policy.

We consider value of T equal to 8, 12, 15, and 20, and for each value of T we consider
1. a “risky” case with p; = .65, p; = .875, and p3 = .975 and
2. a relatively “risk-free” case with p; = .9,p2 = .95, and p3 = .98.

We keep the probability of a fruitful second visit to node 5 set to one half throughout (i.e. p = .5). The
exact expected cost to go from the initial state (all vehicles at home at time zero with all regions unvisited)
is displayed for each policy, along with the corresponding “ideal trajectory” which is the sequence of pairs
of nodes visited by the vehicles given that neither of the vehicles are destroyed. These ideal trajectories
indicate the character of the various policies under consideration. We notice in the data the following trends.

1. The naive policy 7!, which always implements an optimal action in the Auxiliary Problem 1, often
does significantly worse than the optimal policy, especially in the risky cases.

2. The value-based policy w2, which uses the optimal cost of Auxiliary Problem 1 as an approximation
of the optimal cost-to-go function always does worse than wl, often significantly worse. Perhaps the
reason for this is that the approximation is state-insensitive. That is, if there is enough time left in the
deterministic approximation, all of the value to be gained in the graph can be picked up with certainty.

3. The (exact) rollout policy = recovers some (but not all of the) expected value achieved by 7*. The
relative amount of recovery seems to diminish as the time horizon T' increases.

We also notice that there is some insight to be gained in studying the ideal trajectories for each of the policies.
For example, in Figure 2, the total cost of the ideal trajectory of 7* is -332, whereas the corresponding total
cost for w! is -284. The explanation for this discrepancy lies in the relative riskiness of the m! routing.
The optimal policy chooses to do redundant routing in order to account for the risk, whereas the nave
policy branches the routing immediately, and thus requires three-extra medium risk transitions, compared
to 7. We also notice that the ideal trajectory of 7! can be characterized by the “divide and conquer”
philosophy, whereas 7* involves some redundancy (with vehicles following each other to ensure that some
value is obtained). This philosophical dichotomy is even more pronounced in other “risky” cases.




A Scenario for New World Vistas
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Figure 1: A scenario for the path planning problem
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Figure 2: Results for the case that py = .65,p2 = .875,p3 = .975,p= .5, and T = 12.

[ Policy || CTG || | |
= [ 8206 (0.0 |L6)|[&D]G10)] &1D [ (5 12) | (5, 13)
(41001 3,71 | (2,8 | 1,7 [ (0,6) | (0,0)
AT 8367 1 (0,0 [(0,6) | (L7) | (@ 10) | 3, 10) | (& 12) | (5, 13)
(5,10) | (4,7) | 3,8) | (2,7) | (1,6) | (0,0)

e -824.7
> -839.6

Figure 3: Results for the case that py = .9,p2 = .95,p3 = .98,p= .5, and T = 12.
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Figure 4: Results for the case that p1 = .65, p2 = .875,p3 = .975,p = .5, and T = 15.
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Figure 5: Results for the case that p1 = .9,p2 = .95,p3 = .98,p=.5,and T = 15.
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Figure 6: Results for the case that p; = .65,p2 = .875,p3 = .975,p = .5, and T = 20.
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Figure 7: Results for the case that p; = .9,p2 = .95,p3 = .98,p = .5, and T = 20.




5 A Restricted Model for Multiplatform Planning

In this section we discuss a special version of the model presented in Section 2. In this context, we restrict
the value-state space X; of each node i to having at most two states. If X; has a single element, then every
visit to i results in zero accumulated value. If a node i has two value states, then one state corresponds
to the node being unvisited, offering value v; for the next (first) visit, and the other state corresponds to
the node having already been visited, offering zero value for all future visits. Note that the revised model
has NyNV . 2NN states, where Ny is the number of nodes offering reconnaissance value (whose value-state
spaces have two elements) .

Despite the simplification that the revised model affords, we are still hindered by the curse of dimen-
sionality and need to consider methods that scale well with the size of the problem both in terms of graph
complexity and numbers of vehicles. At this point we return to the notion of integer relaxations of network-
flow approximations of the original problem. Since efficient LP solvers are available for such problems, fast
heuristics can be derived based on such approximations which will then serve as base-policies in a rollout
scheme. In the following, we consider one such network-flow approximation where we introduce side con-
straints to limit the amount of “value-flow” into regions of interest, and we introduce gains to model the
“siphoning-off” of flow proportional to the probability of destruction along arcs. It is useful at this point to
introduce some new notation.

1. Let y,’;,,-j be the vehicle-m “value flow” that makes it from node i to node j € A(%) at stage k. (Such
variables are defined for all i € N, j € A(4), m = 1,...,Ny, and k = 0,...,T - 1.) This flow
corresponds to first visits to nodes offering reconnaissance value.

2. Let zfny,-j be the vehicle-m “valueless flow” that makes it from from i to node j € A(i) at stage k.
(Such variables are defined for all 7 € N,je A@), m=1,...,Ny,and k =0,...,T — 1.) This flow
chresponds to visits to nodes offering no reconnaissance value.

3. Let s, (i) be an indicator function, taking on the value of one if vehicle m is initially located at node i.

Note that the quantity (y%, ,; + zk, ;))/pi; may be interpreted as the amount of vehicle-m flow sent from
node i to j at stage k. Let y* and z* be vector representations of the flow variables at stage k, and let y
and z represent aggregates of the flow variables for k =0,...,T — 1.

Auxiliary Problem 2 (Integer-relaxed Network Flow Reformulation)

Ny T-1 T-1
. (1—-pij), & k T-1, ,T-1 k
wEF PIDINLE DD D 9 (ks + i) |+ DL | eimt + zmt) — % ) Ymi| (0 O
' m=1ieN FEA(:) k=0 K JjE€B() k=0

where F is the set of feasible flow vectors, characterized as follows.

1. Nonnegativity:
y,,l;’,ij Z 0 a'nd an,ij 2 0,

forallie N, j€ A(i), m=1,...,Ny, and k=0,...,T - 1.

2. Vehicle Flow Constraints:
(yfn,ij + zfn,ij)/pij <1,
forallie N, je A@G), m=1,...,Ny, and k=0,...,T - 1. (These constraints obviate the need to
upper bound the y¥, .. and zk, ;)

3. Value Node Constraints: r

-

Nv

ST <t

k=0 m=1 j& B(1i)
for all i € N. (These are the difficult side constraints.)
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4. Source Constraints:
Z (ygn.ij + Z?n,ij)/pij = sm(1),
JEA(3)
forallie N andm=1,...,Ny.

5. Flow Conservation: ) .
1 1
E , (y:-;,ji + Zrl:t,ji) = E , (ym-t-ij + zm.t-ij)/p‘ijv
i€B() JEAG)
forallie Nym=1,...,Ny, andk=0,...,T - 2.

This auxiliary problem amounts to a network flow problem with gains and side constraints, where we effec-
tively split each node into two nodes (one which offers value but whose input arcs are capacity constrained
and the other which offers no value but can be revisited often) and then make as many copies of the new
graph as there are time periods remaining in the problem.

In the paragraph following Policy 4 we will discuss an important theoretical difficulty with this auxiliary
problem which affects its ability to approximate the stochastic model of Section 5. First, however, there
are some important (but more superficial) things to discuss about this formulation. To begin, the linear
program we have defined involves 2Ny Ny N4T variables and NyT(Na + Nn) + Ny constraints. There are
two features which prevent this from being an “easy” network flow problem: (1) the Ny side constraints
(which couple the flows of the Ny vehicles) and (2) the gains (which model the probability of destruction).
Individually, these factors can prevent an otherwise “normal” network flow problem from having fractional
solutions. (Check.) If the p;; are set to one, then the problem is a (difficult) network flow problem with
side constraints, generically having fractional solutions. To solve Auxiliary Problem 2, we are compelled to
use a generic LP solver, in this case CPLEX4.0. One nice feature of CPLEX is that it allows the user to
input an initial basis for the primal simplex algorithm it implements. Specifically, since we will be solving
many slightly different problems in the context of rollouts, we will be able to use the optimal solution of
one problem as the initial basis for the next problem. (These “hot starts” have the potential to really speed
up our heuristics.) Finally, we mention that to obtain an approximation of the optimal cost to go from any
state of the system at any time ¢, it is only necessary to

1. replace T with T — ¢ to model the shorter time horizon,

9. to set to zero the right hand side of the side constraints corresponding to nodes that have already been
visited, and

3. replace s, () with the zero-function to model the fact that certain vehicles have been destroyed.
Auxiliary Problem 2 immediately gives rise to another heuristic policy.

Policy 4 [rt = {ud,...,p4_,}] Choose each puf such that ui[€(k)] is an action from state £(k) at stage k
which minimizes the right hand side of Bellman's equation, replacing the optimal cost to go function Jy,,
with val[LP(E(k + 1),k + 1)]:

pile(k)) € E{ gle(k),&(k + )] +val[LPEKk+1),k+1)] | u(k).€k) }. (7

arg min
u(k)eU[g(k)]
(The minimum in this equation may not be unique.)

Note that Policy 4 is analogous to Policy 2 in the sense that val[LP(€(k), k)] is used as a heuristic value
function approximation.

We now return to the theoretical difficulty about Auxiliary Problem 2 which we alluded to earlier. That
is, with the p;; < 1, the side constraints do not completely capture the restriction that one and only one
vehicle can pick up value at a region of interest. In particular, it is possible for the flow of one vehicle to
return to a region of interest to gain value over more than one time period. Suppose, for example, that

y,’;,ﬁ € (0,1). There is nothing which prevents the optimal flow vector from recycling some of that flow

so that 52 > 0. This is a possibility which is forbidden in the stochastic integer constrained version of

the problefn. (Note that this problem goes away if we set the py; 's to one in our definition of Auxiliary
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Problem 2.) Because we have relaxed the integer constraints, not only will we get fractional flows, but these
flows will generically correspond to vehicles visiting nodes for value more than once. Despite this difficulty,
the auxiliary problem is of interest because (1) for many scenarios the approximation may not be that bad
and (2) the fractional solutions of this problem can be used as a starting point in constructing feasible primal
solutions that provide (hopefully) tight upper bounds to the optimal value of the stochastic problem. In
pursuing the latter idea, there are a number of ways to proceed: :

1. One possibility is to decompose the fractional solutions of Auxiliary Problem 2 into an enumerated list
of feasible (integer) multipaths (paths for all of the vehicles) and then evaluate and sum the expected
costs associated with each trajectory. The cost of the best such multipath should yield an accurate
approximation of the cost of the optimal solution to the original stochastic problem.

2. Another possibility is to fix the fractional solution to Auxiliary Problem 2 by

(2) choosing a vehicle who's flow should be repaired,

(b) removing the flow corresponding to that vehicle and then resolving it’s relaxed flow problem
incorporating the extra constraint that this flow cannot visit value-nodes more than once (a
heuristic may have to be employed here), and

(c) checking the resulting multipath and determining whether to return to the first step or to quit.

The point of this procedure is that it may be considerably easier (and faster) to enforce the the non-
cycling constraint in solving single-vehicle problems than to try to fix the original fractional multipath
by considering all vehicles at once. (The procedure above could also be used in starting from scratch,
without having the solution to Auxiliary Problem 2 in hand.)

Of course, once we have identified a procedure to fix the solutions to Auxiliary Problem 2, we may use
the costs of the new multipaths as approximations to the optimal cost-to-go in a value-based heuristic in a
fashion similar to Policy 4.

Unfortunately, we have had almost no time to experiment with the above approaches. One observation
we have made is that optimal solutions to Auxiliary Problem 2 tend to yield lower bounds which are way off
compared to the optimal cost. (The lower bounds obtained are quite a bit lower than optimal.) This problem
is even worse when we set the p;;’s to one in Auxiliary Problem 2 (to obtain solutions to the deterministic
approximation of the original problem). In fact, by implementing 7% with the approximation where we set
the p;;’s to one we obtain ideal trajectories which simply don’t make sense. This must correspond to the
relatively poor performance of w2 observed earlier. Apparently the optimal cost of the deterministic problem
is a terrible approximation to the optimal cost-to-go of the original stochastic problem. In general, solutions
to Auxiliary Problem 2 are bound to be overly optimistic simply because fractional solutions are allowed
(which in turn gives rise to the flow-cycling problem we discussed earlier).

6 Conclusions

The multiplatform path planning problems described in this paper are very difficult stochastic combinatorial
problems, despite the special structure which is built into the model. The cardinality of both the state
space and the control space grow very rapidly with the numbers of vehicles and regions of interest. In the
experimental results of Section 4, we saw that the introduction of random vehicle destruction has a big effect
on the qualitative nature of optimal routing solutions. Our attempts to implement a reasonable and fast
heuristic that will scale well with the size of the problem (cf. Section 5) are currently best characterized as
“work in progress.”

In terms of future directions, the ideas described in the paragraphs which follow Policy 4 need to be
implemented and evaluated. In addition, one needs to develop approximate approaches for policy evaluation
in large scenarios in order to use rollout algorithms. The computational cost of exact policy evaluation grows
exponentially with problem size, and quickly exceeds the available processing time. These approximate
techniques can be based on Monte Carlo methods or other similar sampling approaches, and are currently
under investigation.
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